Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Front Med (Lausanne) ; 10: 1128414, 2023.
Article in English | MEDLINE | ID: covidwho-2313232

ABSTRACT

Introduction: Cardiopulmonary exercise testing (CPET) may capture potential impacts of COVID-19 during exercise. We described CPET data on athletes and physically active individuals with or without cardiorespiratory persistent symptoms. Methods: Participants' assessment included medical history and physical examination, cardiac troponin T, resting electrocardiogram, spirometry and CPET. Persistent symptoms were defined as fatigue, dyspnea, chest pain, dizziness, tachycardia, and exertional intolerance persisting >2 months after COVID-19 diagnosis. Results: A total of 46 participants were included; sixteen (34.8%) were asymptomatic and thirty participants (65.2%) reported persistent symptoms, with fatigue and dyspnea being the most reported ones (43.5 and 28.1%). There were a higher proportion of symptomatic participants with abnormal data for slope of pulmonary ventilation to carbon dioxide production (VE/VCO2 slope; p<0.001), end-tidal carbon dioxide pressure at rest (PETCO2 rest; p=0.007), PETCO2 max (p=0.009), and dysfunctional breathing (p=0.023) vs. asymptomatic ones. Rates of abnormalities in other CPET variables were comparable between asymptomatic and symptomatic participants. When assessing only elite and highly trained athletes, differences in the rate of abnormal findings between asymptomatic and symptomatic participants were no longer statistically significant, except for expiratory air flow-to-percent of tidal volume ratio (EFL/VT) (more frequent among asymptomatic participants) and dysfunctional breathing (p=0.008). Discussion: A considerable proportion of consecutive athletes and physically active individuals presented with abnormalities on CPET after COVID-19, even those who had had no persistent cardiorespiratory symptomatology. However, the lack of control parameters (e.g., pre-infection data) or reference values for athletic populations preclude stablishing the causality between COVID-19 infection and CPET abnormalities as well as the clinical significance of these findings.

2.
Physiol Rep ; 10(5): e15201, 2022 03.
Article in English | MEDLINE | ID: covidwho-1743019

ABSTRACT

We assessed PET-CT myocardial blood flow (MBF) using N-13 ammonia, brachial flow-mediated dilation, and cardiopulmonary exercise test in five post-discarged MIS-C survivors. None of the patients (median age: 9, range: 7-18 years; 3 females; 2 males) had preexisting pediatric chronic conditions. At the follow-up visit, two patients exhibited severe perfusion defect developed in the left ventricular cavity, suggesting extensive myocardial ischemia (MBF <2.0) and one patient showed persistent mild pericardial effusion. Others two patients demonstrated endothelial dysfunction. Nevertheless, all patients had lower predicted values in the VO2peak , VO2VAT , OUES, and O2 Pulse (range: 35.2%-64.5%; 15.6%-38.2%; 1.0-1.3 L/min; 4-7 ml/beat), respectively. Our d suggested that previously health MIS-C patients had impaired MBF, endothelial dysfunction and lower cardiopulmonary capacity at follow-up analysis. Multidisciplinary further investigations should be conducted to reinforce these findings.


Subject(s)
COVID-19 , Cardiovascular System , COVID-19/complications , Child , Female , Humans , Male , Positron Emission Tomography Computed Tomography , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
3.
Frontiers in sports and active living ; 3, 2021.
Article in English | EuropePMC | ID: covidwho-1652070

ABSTRACT

In the current scenario, in which an elevated number of COVID-19 survivors present with severe physical deconditioning, exercise intolerance, persistent symptoms, and other post-acute consequences, effective rehabilitation strategies are of utmost relevance. In this study, we report for the first time the effect of home-based exercise training (HBET) in a survivor patient from critical COVID-19 illness. A 67-year-old woman who had critical COVID-19 disease [71 days of hospitalization, of which 49 days were in the intensive care unit (ICU) with invasive mechanical ventilation due to respiratory failure] underwent a 10-week HBET aiming to recovering overall physical condition. Before and after the intervention, we assessed cardiopulmonary parameters, skeletal muscle strength and functionality, fatigue severity, and self-reported persistent symptoms. At baseline (3 months after discharge), she presented with severe impairment in cardiorespiratory functional capacity (<50% age predicted VO2peak). After the intervention, remarkable improvements in VO2peak (from 10.61 to 15.48 mL·kg−1·min−1, Δ: 45.9%), oxygen uptake efficiency slope (OUES;from 1.0 to 1.3 L·min−1, Δ: 30.1%), HR/VO2 slope (from 92 to 52 bpm·L−1, Δ: −43.5%), the lowest VE/VCO2 ratio (from 35.4 to 32.9 L·min−1, Δ: −7.1%), and exertional dyspnea were observed. In addition, handgrip strength (from 22 to 27 kg, Δ: 22.7%), 30-s Sit-to-Stand (30-STS;from 14 to 16 repetitions, Δ:14.3%), Timed-Up-and-Go (TUG;from 8.25 to 7.01 s, Δ: −15%) performance and post-COVID functional status (PCFS) score (from 4 to 2) were also improved from baseline to post-intervention. Self-reported persistent symptoms were also improved, and Fatigue Severity Scale (FSS) score decreased (from 4 to 2.7) from baseline to post-intervention. This is the first evidence that a semi-supervised, HBET program may be safe and potentially effective in improving cardiorespiratory and physical functionality in COVID-19 survivors. Controlled studies are warranted to confirm these findings.

SELECTION OF CITATIONS
SEARCH DETAIL